Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Genome Biol ; 22(1): 21, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1015895

ABSTRACT

In any 'omics study, the scale of analysis can dramatically affect the outcome. For instance, when clustering single-cell transcriptomes, is the analysis tuned to discover broad or specific cell types? Likewise, protein communities revealed from protein networks can vary widely in sizes depending on the method. Here, we use the concept of persistent homology, drawn from mathematical topology, to identify robust structures in data at all scales simultaneously. Application to mouse single-cell transcriptomes significantly expands the catalog of identified cell types, while analysis of SARS-COV-2 protein interactions suggests hijacking of WNT. The method, HiDeF, is available via Python and Cytoscape.


Subject(s)
Computational Biology/methods , SARS-CoV-2/metabolism , Algorithms , Animals , Humans , Mice , Viral Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 117(41): 25254-25262, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-809109

ABSTRACT

Multisystem Inflammatory Syndrome in Children (MIS-C) associated with COVID-19 is a newly recognized condition in children with recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These children and adult patients with severe hyperinflammation present with a constellation of symptoms that strongly resemble toxic shock syndrome, an escalation of the cytotoxic adaptive immune response triggered upon the binding of pathogenic superantigens to T cell receptors (TCRs) and/or major histocompatibility complex class II (MHCII) molecules. Here, using structure-based computational models, we demonstrate that the SARS-CoV-2 spike (S) glycoprotein exhibits a high-affinity motif for binding TCRs, and may form a ternary complex with MHCII. The binding epitope on S harbors a sequence motif unique to SARS-CoV-2 (not present in other SARS-related coronaviruses), which is highly similar in both sequence and structure to the bacterial superantigen staphylococcal enterotoxin B. This interaction between the virus and human T cells could be strengthened by a rare mutation (D839Y/N/E) from a European strain of SARS-CoV-2. Furthermore, the interfacial region includes selected residues from an intercellular adhesion molecule (ICAM)-like motif shared between the SARS viruses from the 2003 and 2019 pandemics. A neurotoxin-like sequence motif on the receptor-binding domain also exhibits a high tendency to bind TCRs. Analysis of the TCR repertoire in adult COVID-19 patients demonstrates that those with severe hyperinflammatory disease exhibit TCR skewing consistent with superantigen activation. These data suggest that SARS-CoV-2 S may act as a superantigen to trigger the development of MIS-C as well as cytokine storm in adult COVID-19 patients, with important implications for the development of therapeutic approaches.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Receptors, Antigen, T-Cell/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/immunology , Amino Acid Motifs , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Enterotoxins/chemistry , Epitopes, T-Lymphocyte , Humans , Intercellular Adhesion Molecule-1/chemistry , Models, Molecular , Mutation , Neurotoxins/chemistry , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Protein Binding , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Superantigens/chemistry , Superantigens/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL